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High throughput molecular biomarker technologies combined with bioinformatics have been 
successfully used to identify infectious agents, track transmissions, determine the origins of 

outbreak, and provide effective genomic surveillance
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Infectious diseases are one of the leading causes of death 
worldwide. Prior to the recent outbreak of COVID-19, hospitals 
in the US alone reported well over 3 million cases of recognised 
infectious disease-related illnesses annually (1). Significantly 
greater numbers remained unrecognised, both in the 
inpatient and community settings, resulting in substantial 
morbidity and mortality. Despite progress made in our 
understanding of biological processes and availability of 
vaccines, the incidence of infectious diseases has increased 
globally during the last three decades. During the past 
decade alone, we have witnessed the emergence of many 
new pathogens not previously detected in humans, such 
as the avian influenza virus, Ebola, severe acute respiratory 
syndrome (SARS), and Middle East respiratory syndrome 
coronavirus (MERS-CoV). Critical and timely intervention for 
infectious diseases relies on rapid and accurate detection of 
the pathogen in the acute care setting and beyond (2). 

Different laboratory methods, such as bacterial culture, 
molecular testing, and serology, are used to confirm a clinical 
diagnosis of infectious diseases. While these methods 
largely rely on the identification of the causative agents of 
the diseases themselves, serological methods assess the 
response of host innate immune systems for monitoring. 
The host’s innate immune system is activated on infection 
by pathogens for non-specific suppression of pathogen 
replication and clearance. The presentation of pathogen-

derived antigens to the cells of the adaptive immune response 
results in generating effective long-term immunity. The IgM-, 
IgA-, and IgG-type pathogen-specific antibody levels provide 
important measurements to predict population immunity 
against the disease. The pathogens also evolve to circumvent 
the host immune response and use host cells’ transcriptional 
machinery to re-establish replication and infection. The 
functional state of the innate and adaptive immune response 
in a blood sample of a patient provides a prognostic 
biomarker of the disease and assists in vaccine development. 
In critical care settings, biomarkers are being increasingly 
utilised to improve clinical management for early diagnosis, 
risk stratification, and optimising therapeutic decisions.

Epidemics of infectious diseases vary geographically and 
through time due to movement of hosts who are susceptible 
to the disease or infected with the disease. In addition to 
the pathogen’s genetic background, a host’s genetic risk 
allows development of an advantageous ecosystem for 
pathogens. The interaction between hosts and pathogens is 
a coevolutionary process in which different sets of genetic 
events in any given population impact infection, disease 
development, rate of progression, convalescence, and 
asymptomatic carrier state. With the advances in genomic 
technologies and the development of computation tools, 
a high-resolution genomic architecture of the host and its 
cognate pathogens are used to decipher the evolutionary 
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dynamics of host-pathogen interactions. These genome- 
wide association studies exploit study designs that filter out 
genotypic or haplotype risk ratios to identify genetic 
susceptibilities and resistant conferring loci in human 
genomes (3). The identified mutational signatures are used to 
understand host protective mechanisms against pathogens for 
therapeutic interventions and provide markers for diagnostics 
and surveillance. For example, the ∆32 mutation at the CCR5 
locus is a well-studied example of natural selection acting 
in humans (4). Homozygous carriers of the ∆32 mutation 
(CCR5Δ32/Δ32) have been found to be resistant to HIV-1 
infection in Caucasian subjects due to a non-functional CCR5 
chemokine receptor (5). The homozygous mutation is present 
in only 1% of people descended from Northern Europe. 
Another 15% of people with European heritage carry one 
copy of the gene, which reduces the chances of infection and 
delays the progress of AIDS. The prevalence of this mutation 
in Europeans has existed in the population since before HIV 
infection occurred in humans, suggesting that past epidemics 
have played a role. The timing of the prevalence of mutation 
coincides with the Black Death pandemic, potentially driving 
natural selection in the human population (6). Those with the 
mutation were more likely to survive the plague and pass on 
their genes than those without, which caused an increase in 
the percentage of people with the mutation. 

Similar to introducing chromosomal alterations, highly 
pathogenic viruses also have been shown to regulate the 
host epigenome (7). Some of these epigenetic changes, in 
particular DNA methylation of CpG islands, can be induced 
upon initial infection. The process is driven mainly by the 
increase of DNA methyltransferase (DNMT) activity, the 
enzymes that catalyse the transfer of methyl groups to 
cytosine residues of DNA. In a recent study, Corley et al 
showed that the methylation landscape of promoter-associated 
CpG islands is altered by the SARS-CoV-2 infection (8). 

While the promoter regions of genes involved in the host 
type I interferon (IFN-1) response were hypermethylated, 
promoter regions of inflammatory genes were hypomethylated. 
These changes in the methylation patterns correlate 
with the changes in the expression of the related genes. 
Similar analysis in other infectious diseases has shown that 
pathogen infection leaves marked changes in the host DNA 
methylation patterns that could affect the expression of host 
factors involved in viral replication as well as in innate and 
adaptive immune defence (9). While the causal relationship 
between the epigenetic signals and infectious agents remains 
to be unravelled, these epigenomic signals present novel 
opportunities for therapeutics.

The changes in genomes and epigenomes in a population 
following infection results in changes in gene expression 
that can be investigated to develop disease classifiers (10). 
Peripheral blood is an ideal source for performing these 
studies due to the presence of the circulating white blood 
cells that are directly responding to the myriad immune 
signals cascading from remote primary sites of infection. 
Several studies have indicated that gene expression profiling 
of peripheral blood mononuclear cells (PBMCs) is a powerful 
novel approach for analysing host responses during infection, 
since bacteria and viruses trigger unique biomarkers during 
infection (11). Historically, microarray technology has been 
utilised for measuring gene expression changes. As the cost 
of next-generation sequencing (NGS) has rapidly decreased, 
the ability to obtain the entire snapshot of the transcriptome 
at a higher resolution and detect expressed sequence variants 
makes it a method of choice for performing such studies. 
These experiments yield massive amounts of data that are 
subjected to dimensionality reduction using mathematical 
models, such as SPARse factor analysis, Bayesian analysis, 
etc., to construct classifiers (12-13). As an example, a 
Bayesian network model has been recently used to quantify 

Figure 1: Schematic representation of genomic surveillance for infectious diseases
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immune response to a viral infection using gene-expression 
datasets from whole blood or PBMC samples (14). The 
authors used the gene-expression data generated during 
clinical studies following infections with influenza, respiratory 
syncytial virus, dengue, yellow fever, rotavirus, and hepatitis 
B virus to identify a transcriptional signature associated with 
increased activity of JAK-STAT1/2 and JAK-STAT3 signal 
transduction pathways. Similar analysis from sufficiently large 
studies holds the promise to develop a diagnostic test that 
can distinguish disease state in an individual with similar 
phenotypic features, such as viral vs bacterial respiratory 
infection and systemic inflammatory response syndrome 
vs sepsis, etc. Once disease-specific fingerprints can be 
identified, they can serve as a powerful diagnostic tool 
that can be assessed using quantitative polymerase chain 
reaction (qPCR) or digital PCR in a clinical setting.

While bulk transcriptional profiling provides very useful 
information, sequencing of transcriptome at the single-cell 
level, on a genome-wide scale, enables a greater appreciation 
of the cellular diversity in complex biological organisms and 
the myriad host transcriptional states during infection (15). 
For instance, single cell RNA-sequencing analysis classified 
the PBMCs from HIV-1 envelope-vaccinated neonatal and 
adult monkeys into four groups: B, T, natural killer, and 
monocyte, with each cell cluster showing different expression 
patterns between neonatal and adult monkeys. A significant 
increase in the ratio of activated B cells was found in neonatal 
monkeys, indicating that the neonatal immune system 
produces a stronger protective response than that of adult 
monkeys during HIV infection (16). Similar analysis has been 
performed to monitor the changes in the peripheral immune 
cell landscape in patients infected with SARS-CoV-2 (17). 
While in its infancy in infectious diseases, understanding 
infection as an integrated process between pathogen and 
host with resolution at the single-cell level ultimately will 
inform development of vaccines with greater productive and 
protective host immunity, enable the development of novel 
therapeutics that harness host mechanisms, and yield more 
accurate biomarkers to guide better diagnostics.

Since the functioning of a biological system is largely driven 
by proteins, efforts also have been made to construct 
host-viral protein-protein interaction networks using the 
literature-curated datasets (18). These networks include 
direct physical interactions between the proteins, as well 
as indirect associations, such as contributions to the same 
biological processes. There are several databases that 
provide information about direct physical interactions such 
as IntAct, the Database of Interacting Proteins, and the 
Biomolecular Interaction Network Database, while indirect 
association is obtained from functional genomic data 
sources, co-expression, functional similarity, text mining, 
and colocalisation databases. In these networks, the nodes 
represent proteins and the edges represent functional 
interactions between the proteins. The key interactions 
enriched in the infection pathways and associated nodes 

provide valuable targets for drug development. One can use 
computational tools to perform in silico knockouts and identify 
potential targets for drug development. While extremely 
powerful, the major drawback of such an analysis is the 
dependence on the known literature. There are still several 
genes that code for hypothetical proteins, and these are 
not represented in the analyses. In addition, the similarities 
between various infectious agents make it harder to tease out 
networks to identify biomarkers for individual diseases.

In addition to the biological network, social networks, with 
the diagnosed patients as ‘nodes’ and their epidemiological 
contact as ‘edges’, are being used to study how movement 
affects epidemics (19). Integration of social network analysis 
allows the capture of genetic differences in the host population 
on disease transmission, simulate and predict disease spread, 
and test disease control strategies. Many of these analysis 
tools draw on concepts and algorithms from graph theory that 
provide information about the importance of various nodes 
and how they communicate with each other. Characterisation 
of individuals based on different levels of infectiousness could 
guide the contact tracing interventions to prioritise contact 
screening, testing, and monitoring in a targeted manner at 
field level.

The changing epidemiology of infectious diseases requires 
new control strategies. However, establishing the burden of 
infectious diseases in low-resource settings is challenging 
due to the absence of effective surveillance systems. Efficient 
diagnostic tools are needed to provide accurate and timely 
guidance for identification, transmission disruption, and 
appropriate treatment administration of infectious diseases. 
Point-of-care (POC) tests provide actionable results at the 
site of care delivery. Significant progress has been made in 
developing accurate, simple, and cost-effective diagnostic tools 
for the detection of infectious disease-specific nucleic acids 
in the past decade. Multiple approaches have been exploited 
that simplify experimental procedures coupled with integrated 
microfluidic devices, and synthetic biology approaches (20). In 
addition to molecular approaches, serological approaches have 
been used to detect pathogen-specific proteins for diagnosis. 
Stringent clinical validations are still needed for these 
technologies to be translated from research to clinical practice. 
Since many infectious diseases may present with similar 
clinical symptoms, POC tests with multiplex functionality 
are highly desirable. Systematic characterisation of a set of 
biomarker signatures for a single infectious disease using high 
throughput technologies and computational approaches will 
prove to be a useful approach for future screening. 

The breadth of applications for biomarkers in the practice 
of infectious diseases medicine – including technologies 
to facilitate rapid and accurate pathogen identification and 
determination of susceptibility to antimicrobials, patient 
risk stratification, and the study of communicable diseases 
epidemiology – will help in preventing, detecting, and 
responding to epidemics.
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